

Fundamentals of the Pulsed-Laser Technique for Single-Event Effects Testing

Dale McMORROW, Vincent POUGET, Pascal FOUILLAT and Stephen BUCHNER

Affiliations:

Naval Research Laboratory IMS University of Bordeaux The Boeing Company, National Semiconductor Vanderbilt University/ISDE NASA Goddard Space Flight Center NASA Office of Logic Design SGT/ QSS/NASA GSFC Sandia National Labs CEA Commissariat à l'énergie atomique CNES Centre national d'études spatiales TRAD, STMicroelectronics, PULSCAN, THALES, EADS

Joe Melinger, Art Campbell, William Lotshaw, F. Darracq, D. Lewis, P. Fouillat, P. Peronnard, G. Foucard, R. Velazco Mark Baze, Mike Maher, Richard Katz, Martha O'Bryan, Christian Poivey, Kenneth A. Label, Ray Ladbury, Daniel Loveless, Kevin Warren, Lloyd Massengill, Sarah Armstrong, Philippe Calvel, Marie-Catherine Palau, Françoise Bezerra, Robert Ecoffet, Véronique Ferlet-Cavrois, John D. Davis, Reed K. Lawrence, James H. Bowman, Ron D. Brown, Dave Carlton, Joseph Pena, Nadim Haddad,

Outline

Basic Concepts

<u>GOAL</u>: to illustrate the basic characteristics of TPA and SPA SEE

Case Studies

- SEU Mapping
- Sensitive Node Identification/Mitigation
- Laser-Induced Latch-up Screening/Mitigation
- Hardened Circuit Verification
- > Dynamic SEE Testing
- Two-Photon-Induced SEE
- Conclusions/Questions

A tool for *injecting charge* in a well-defined manner into semiconductor microelectronic and nanoelectronic structures

Has become: *indispensable* for Single-Event Effects characterization

Pulsed Laser SEE.....

- <u>Above-band gap</u> (*conventional, single-photon*) pulsed laser can inject:
 - a well-characterized quantity of charge
 - in a well-defined <u>x-y location</u>
 - with a well-defined charge-deposition profile
 - at a well-defined time
- <u>Sub-bandgap</u> (*two-photon*) pulsed laser can inject charge:
 - in a well-defined <u>x-y-z location</u>
 - at a well-defined time
 - and can propagate through silicon wafers
 - but is difficult to quantify

TPA and SPA: TWO COMPLEMENTARY TECHNIQUES

- Neither is intended to replace heavy-ion irradiation
- TPA can not replace "conventional" (above band gap) SPA excitation

NRL Laser SEE Laboratory

PULSCAN equipment

200

SEE Evaluation of COTS Parts

 pulsed laser interrogation permits detailed spatial evaluation of SEE that is not possible with broadbeam HI irradiation

If performed with broad-beam heavy ion irradiation you may or may not be able to separate out these different effects

Buchner, et al., TNS, 46, 1445 (1999).

Laser-Induced SEE Experiment: Optical Excitation of Carriers

NOTE: End result of excitation is identical

The material does not know the difference

Pulse Propagation Equation:

Optical Excitation of Carriers

Optical Excitation of Carriers

Carrier generation equation:

$$\frac{dN(r,z)}{dt} = \frac{\alpha I(r,z)}{\hbar\omega} + \frac{\beta_2 I^2(r,z)}{2\hbar\omega}$$

Carrier Generation:

$$N_{1P}(z_m) = \frac{\alpha}{\hbar\omega} \exp(-\alpha z_m) \int_{-\infty}^{\infty} I(t) dt, z_m \ge 0$$

Beer's Law

Linear (Single-Photon) Optical Absorption

$$I(r,z) = I_o e^{-\alpha z}; \quad N(r,z) \propto I(r,z)$$

Carrier Density Distribution 1/e Optical Penetration Depth

What is meant by:

- "Penetration Depth"?
- "Skin Depth"?

➔ 1/e depth

$$I_{1/e} = 0.368 I_{o}$$

Depth at which the optical irradiance has fallen to 36.8% of its initial value

Carrier Density Distribution 1/e Optical Penetration Depth

Carrier Density Distribution 1/e Optical Penetration Depth

Nonlinear (Two-Photon) Optical Absorption

NRL Laser Single-Event Effects 13 Years of TPA SEE

3002

IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 49, NO. 6, DECEMBER 2002

Subbandgap Laser-Induced Single Event Effects: Carrier Generation via Two-Photon Absorption

Dale McMorrow, William T. Lotshaw, Joseph S. Melinger, Stephen Buchner, Member, IEEE, and Ronald L. Pease, Senior Member, IEEE

Abstract—Carrier generation based on subbandgap two-photon absorption is demonstrated and shown to be a viable alternative to the conventional single-photon excitation approach in laser-induced single event effects. The two-photon approach exhibits characteristics distinct from those of single-photon excitation, and may be advantageous for a range of single-event effect investigations. The charge track produced by two-photon absorption more closely resembles that of heavy-ion irradiation and, because the photon energy is subbandgap, backside injection through bulk silicon wafers is straightforward and three-dimensional mapping is possible.

Index Terms—Error injection, multi photon absorption, optical propagation in absorbing media, silicon, single-event effects, single-event transients, two-photon absorption.

I. INTRODUCTION

T HE PULSED picosecond laser has become an important tool for the investigation and understanding of single-event effects (SEEs) in microelectronic circuitry [1]–[7]. In its present implementation, the pulsed-laser technique is based upon the excitation of carriers in a semiconductor material using tightly focused, above-bandgap optical excitation. Carrier generation is governed primarily by Beer's law

Fig. 1. Room temperature absorption spectrum of silicon in the visible and near-infrared region of the spectrum illustrating the common laser wavelengths used for above-bandgap single-event effects measurements and also that for the subbandgap experiment described here [8]–[11].

Nonlinear (Two-Photon) Optical Absorption

Nonlinear (Two-Photon) Optical Absorption

Carrier generation equation:

$$\frac{dN(r,z)}{dt} = \frac{\alpha I(r,z)}{\hbar\omega} + \frac{\beta_2 I^2(r,z)}{2\hbar\omega}$$

 Carriers are generated by nonlinear absorption at high pulse irradiances by the <u>simultaneous absorption of</u> <u>two photons</u>

- Two photons absorbed
- By the material (silicon)
- Simultaneously
- Create a single e-h pair

Two-Photon Absorption SEE Experiment

"Zeroth" Order TPA Carrier Distribution

Carriers are highly concentrated in the *high irradiance region* near the focus of the beam

 This permits <u>3-D mapping</u> and <u>backside illumination</u>

McMorrow, et al., TNS 2002

Because of the lack of exponential attenuation, carriers can be *injected at any depth* in the semiconductor material

Two-Photon Absorption SEE Experiment

"Zeroth" Order TPA Carrier Distribution

Two-Photon Absorption:

- Efficient only in the highirradiance region near the focus of the beam
 - Tight focus
 - Short pulse (~120 fs)
 - High pulse energy (~1 nJ)

McMorrow, et al., TNS 2002

Pulsed Laser-Induced SEE Experiment

Two-Photon Absorption

M. Goppert-Mayer, "Ueber Elementarakte mit zweiQuantenspruengen", *Ann. Phys.*, vol. 9, pp. 273-294, 1931.

Constructions of Two-Photon Absorption Fluorescence Microscopy

Other Applications of Two-Photon Absorption
Two-photon microscopy of in vivo brain function

After Wikimedia commons

INSTwo-Photon Absorption SEE Experiment What have we left out?

- Free Carrier Absorption
- Pump depletion
- Phase equation:

$$\frac{d\Phi(r,z)}{dz} = \beta_1 I(r,z) - \gamma_1 N(r,z)$$

- β_I is proportional to the real part of the nonlinear susceptibility ($\chi^{(3)}$)
- γ_I describes the refraction due to free carriers
- Nonlinear refractive index changes
- <u>Net conclusion</u>: results described here represent a <u>convenient</u> Oth order approximation and are valid only at low pulse irradiances. <u>Recent work is addressing these higher-order</u> <u>effects....</u>

S Recent Developments: Quantitative Characterization of TPA SEE

What Happens Inside the Silicon?

- Need exists for understanding *quantitatively* the carrier density distribution in TPA SEE experiments
 - Complicated problem
- Community has been relying on a *"Zeroth Order"* representation
 - Only considers carrier generation
 - Neglects all all other effects
- NRL has been initiated a program to address this problem
- The current status of this effort is presented here

McMorrow, et. al, TNS 49, 3002 (2002).

<u>Goals:</u>

- Produce a software program that can accurately simulate the TPA-induced carrier deposition profile in silicon for any given set of experimental conditions
- Simulate/predict impact of various optical nonlinearities on the beam propagation through, and generation of free carriers in the medium

<u>Approach:</u>

- Numerical modeling using existing simulation software (NLO-BPM) adapted for carrier generation and applied to silicon [Kovsh, et al., Applied Optics, 38, 1568 (1999)]
- Confirm that capabilities can accommodate experimental conditions
- Validate results through experimental measurement

Nonlinear Beam Propagation in Si

1.6 nJ Gaussian Beam

1.6 nJ Gaussian Beam

Hales, et al., IEEE TNS 61, 3504 (2014)

5 nJ

16 nJ

Hales, et al., IEEE TNS 61, 3504 (2014)

Underfilled Objective: Gaussian Beam

Overfilled Objective: Non-Gaussian (Truncated) Beam

1.6 nJ Truncated Beam

TPA Dosimetry:

Quantitative Characterization in TPA SEE <u>Why do we care</u>?

• The primary advantage of laser-based SEE approaches lies in their *qualitative capabilities*:

- sensitive node identification
- RHBD verification
- basic mechanisms/model validation/calibration
- part screening (ASET, SEL)
- fault injection
- However:
 - Set operating point prior to experiment
 - Monitor operating point during experiment
 - Require correlation between subsequent experiments
 - Next-level understanding of basic mechanisms SERESSA 2015 – Puebla, Mexico

Definition for TPA Dosimetry:

Measurement of the relevant characteristics of the optical pulse delivered to the surface of the DUT

Goals for TPA Dosimetry System:

Convenient, reliable, reproducible measurement of the relevant characteristics of the optical pulse delivered to the surface of the DUT

- Development of online monitors
- Develop ability for control vs. monitoring

Experimental Setup for TPA SEE Dosimetry

TPA Dosimetry: Focused Laser Spot Size

Khachatrian, et al., IEEE TNS 61, 3416 (2014)

Laser SEE testing, technology and packaging

- Main constraint of the laser technique:
 - Optical access to silicon is mandatory
- Packaging
 - Ceramic or plastic opening
 - Lead frame masking => repackaging
 - Flip-chip
- Modern process technologies
 - Many interconnections layers
 - Metal lines totally absorb light
 - Dummy cells: metal filling for process planarization

Solution: backside testing

Front side or backside approach

Laser Parameter Summary

Wavelength ۲ Determines absorption in silicon ____ Fixed by The longer the deeper (but lower resolution) laser source technology & cost **Pulse duration** The shorter the closer from particles Spot size Often fixed by Limited by diffraction optical setup, but Minimum value = maximum fidelity can be adjusted

Energy

- Main experimental variable
- Difficult link with LET

Laser SEE testing options

- Several laser facilities around the world
 - R&D facilities: flexibility, accuracy
 - Industrial facilities: cost, speed, reliability

Test services

- Beam time + support engineer
- Commercial systems now available

ATLAS Laser Facility at IMS

- NIR-tunable picosecond laser source
- Amplified femtosecond parametric laser source
- Computer controlled tunability
 - : 400 2500 nm
- Energy : up to 1 mJ
- Picosecond synchronization of laser pulse with test vector
- 5 laser-injected microscopes
- Backside testing
- Microprobing station with backside laser scanning microscope
- New laser techniques for failure analysis
- Dedicated test chips

Pulsed Laser Single-Event Effects

CASE STUDY 1

Single-Event Upset Mapping in an SRAM Cell

Test Vehicle : 6T SRAM cell

- 0.8 µm AMS BiCMOS technology
- low density of metal tracks (SPA technique and frontside testing)

23µm

Scanning automation : basic principle

From SEU mappings to X Section analysis

Pulsed Laser Single-Event Effects

CASE STUDY 2

Single-Event Upset Mapping in of a commercial SRAM

Case study 1: HM6504 SRAM

• V_{DD}=5V

• I_{DDmax}=50mA

- Wavelength : 800nm
- Pulse length : 1ps
- Spot 1/e ∅ : 1.1µm

• Scanning step : 1µm

SEU mapping of a single SRAM cell

- A single cell is visually selected in the middle of the array : the « target cell »
- Its logical address is read from the tester by inducing an SEU with the laser
- The adresses of the surrounding cells (the « neighbors ») are also noted
- During the scan, after each laser strike :
 - only upsets in the target cell are used to build the mapping
 - neighbors state is monitored to ensure that the electrical environment of the target cell remains the same

Neighbors

4 pJ All to 0 All to 1

7.2 pJ All to 0 All to 1

10.4 pJ All to 0 All to 1

20 pJ 1 to 0 0 to 1

SEU Laser cross-section

Dynamic Testing of ADCs

Transient fault injection in an ADC

Mixed signal ICs = complex errors
AD 7821, 8 bits, 100kS/s, 1/2 flash ADC

 \leftarrow T_{Las} \rightarrow

Laser

Experimental results with ADC (2) Dynamic sensitivity of comparators

comparators

Pulsed Laser Single-Event Effects

CASE STUDY 4

Analog Single-Event Transients in an Operational Amplifier

Case study 4: LM124

- LM124 : quad operationnal amplifier
- Analog SET observed during particle accelerator testing
- Transients duration in the µs domain

ASET reproduction with laser

ASET amplitude mapping

- Mappings of the amplitude of the transient measured
- Sensitive areas clearly identified
- Possibility of measuring the laser cross section from backside

Pulsed Laser Single-Event Effects

CASE STUDY 5a

Laser-Induced Latchup Screening in CMOS Devices

- COTS Parts
 - Screening and Characterization
- Space-Qualified Parts
 - Identify SEL sensitive areas
 - Redesign to eliminate problem

Why is Latchup an Issue?

 A single latchup event <u>can compromise an entire</u> <u>mission</u>

Latch-Up in CMOS Devices

- Parasitic vertical (n-p-n) and lateral (p-n-p) bipolar transistors are a characteristic of CMOS technology
- If charge is injected into the base of one of the transistors, that transistor turns on; the increased current flow causes an injection of charge into the base of the other transistor, turning it on as well
- The result is that there is a feedback so that both transistors are turned on, leading to a low-resistance path between V_{dd} and Gnd, which is the origin of the latchup current.
- Current continues to flow until the voltage is dropped sufficiently so that the transistors turn off.

Latch-Up Screening of COTS Parts for Space Missions

- The pulsed laser permits the rapid and accurate location of SEU and SEL sensitive regions of COTS parts with sub-micron precision
- This example: two Resolver-to-Digital Converters were screened for latchup for a NASA space mission

DDC RDC19220

Latch-Up Screening of COTS Parts Single-Photon Absorption

Creates a single e-h pair

Latch-Up Screening of COTS Parts for Space Missions

DDC RDC19220

Latch-Up Screening of COTS Parts for Space Missions

- The latch-up sensitive areas for one of the parts is shown here
- Based solely on these laser results, this part was eliminated from consideration for this and future NASA missions

SEL sensitive areas in COTS RDC (DDC RDC19220)

Buchner, et al., TNS, **46**, 1445 (1999).

Latch-Up Screening of COTS Parts for Space Missions

- The latch-up sensitive areas for one of the parts is here
- Based solely on these laser results, this part was eliminated from consideration for this and future NASA missions
- The other part, it turned out, was latch-up free and, eventually, was deemed acceptable for the mission in question

SEL sensitive areas in COTS RDC (DDC RDC19220)

Buchner, et al., TNS, **46**, 1445 (1999).

Pulsed Laser Single-Event Effects

CASE STUDY 5b Laser-Induced Latchup Screening and Mitigation in CMOS Devices

- LVDS Quad differential line driver designed into recent (2006) GPS upgrade program
- Unanticipated latchup sensitivity observed in HI testing (NASA)
- Unacceptable for mission requirements; threatened to delay launch date (big \$\$\$)
- Pulsed laser SEL evaluation (*NRL*) revealed sensitivity localized to a small region \rightarrow redesign possible
- Redesigned (*Boeing*) \rightarrow refabricated (*NS*) \rightarrow retested (*NASA*)
- <u>No Latchup observed in redesigned part</u>
- Launch on schedule

• We were HEROS!

National Semiconductor DS90C031 LVDS Original Design

Drive Transistor

Ground

Latchup Location Identified by Laser

Resistor

McMorrow, et al., IEEE TNS **53**, 1819 (2006).

National Semiconductor DS90C031 LVDS Comparison of Two Designs

McMorrow, et al., IEEE TNS 53, 1819 (2006).

Pulsed Laser Single-Event Effects

CASE STUDY 6

SET Propagation in Logic Circuits

• As of 2006, previous work had shown:

 SET measurements on LARGE CHAIN STRUCTURES under heavy ions can have WIDE DISTRIBUTIONS of pulse widths (> 1 ns), in bulk or SOI [Benedetto, Mavis, Eaton, Gadlage, Yanagawa].

Typically 200-800 Inverters

Direct Measurement of SET Pulses in Chains of Inverters

130 nm partially depleted SOI chains, 800 inverters, four designs

Dec. 2007; Dec 2008

A high-bandwidth singleshot oscilloscope permits direct measurement of voltage transients

Typical runs count at least 200 transients to get enough statistics

Consistent with previous HI measurements

Focused Pulsed Laser Measurements: Dependence on Strike Positioin

4 rows of 200 inverters

Transient widths increase for laser strikes far from the chain output

Transient widths increase for laser strikes far from the chain output

Transient width gets very large close to the chain input (1.8 ns)

Propagation in SOI Inverter Chain has a Progressive Broadening Effect

Propagation-Induced Pulse Broadening Appx. 2 ps/inverter These results: identified the ionization-induced propagation-induced pulse broadening phenomena helped explain and

 neiped explain and understand earlier measurements

SET Propagation: Summary and Conclusions

- Implications:
 - Test methodologies
 - Interpretation and significance of existing data
 - SET mitigation approaches

Ferlet-Cavrois, et al., IEEE TNS Dec. 2007; Dec 2008

Pulsed Laser Single-Event Effects

CASE STUDY 7

Two-Photon-Induced Single-Event Effects:

3-D Mapping of SET

Three-Dimensional Mapping of SEE Sensitivity (LM124 Q20: General Characteristics)

• Z" Dependence: LM124 Q20 TPA: C1-epi Junction (Inverting Configuration; gain of 20)

McMorrow, et al., IEEE TNS, <u>50</u>, 2199 (2003).

"Z" Dependence: LM124 Q20 TPA: C1-epi Junction (Inverting Configuration; gain of 20)

McMorrow, et al., IEEE TNS, <u>50</u>, 2199 (2003).

• "Z" Dependence: LM124 Q20 TPA: C1-epi Junction (Inverting Configuration; gain of 20)

McMorrow, et al., IEEE TNS, <u>50</u>, 2199 (2003).

McMorrow, et al., IEEE TNS, <u>50</u>, 2199 (2003).

McMorrow, et al., IEEE TNS, <u>50</u>, 2199 (2003).

LM124 Q20 TPA SET: "Z" Dependence

Pulsed Laser Single-Event Effects

CASE STUDY 8

Backside, Through-Wafer, Two-Photon-Induced Single-Event Effects

Backside "Through-Wafer" TPA Illumination

Cross Section of Modern Device

Backside "Through-Wafer" TPA Illumination

BAE 4 Mb SRAM Flip Chip Test Structure

Package with lid-on

SRAM chip in test socket with lid removed and back-side of 4Mb SRAM milled

McMorrow, et al., IEEE TNS 52, 2412 (2005)

SERESSA 2015 – Puebla, Mexico

BAE SYSTEMS

Pulsed Laser-Induced SEE Experiment

BAE 4 Mb SRAM Flip Chip Test Structure

BAE SRAM chip through-wafer image and SEU map

McMorrow, et al., IEEE TNS 52, 2412 (2005)

Evaluation of RHBD Approaches SEE Hardened Phase-Locked Loop

- Daniel Loveless: Vanderbilt University
- Lloyd Massengill, Robert Reed, Bharat Bhuva, William Holman: Vanderbilt University

•Experimental study to compare SEE performance of conventional (current-based) charge pump with RHBD voltage-based charge pump

School of Engineering

Loveless, et al., IEEE TNS 57, 2933 (2010)

VANDERBILT UNIVERSITY

School of Engineering

Evaluation of RHBD Approaches SEE Hardened Phase-Locked Loop

Pulsed Laser Single-Event Effects

CASE STUDY 9

Single-Event Effects in Substrate-Etched SOI/CMOS Devices

SERESSA 2015 – Puebla, Mexico

Testing of Modern, Highly-Scaled Technology

- Packaging
 - Ceramic or plastic opening
 - Lead frame masking => repackaging
 - Flip-chip
- Modern process technologies
 - Many interconnections layers
 - Metal lines, tungsten plugs
 - Dummy cells: metal filling for process planarization
- Effect heavy-ion and laser testing in different ways

PASSIVATION 3 PASSIVATION 2 PASSIVATION 1 METAL 5 (CU) METAL 5 (CU) METAL 2 (CU) METAL 2 (CU)

New approaches are required

Single-Event Effects in Substrate-Etched SOI Devices

New Approach:

 Complete removal of the Si substrate in an SOI Device

Initial demonstration: application to a 90 nm
Freescale SRAM

- NRL has adapted a standard XeF₂ etching procedure involving chemical vapor etching of silicon
- The process involves *no mechanical polishing* that can introduce stresses
- The device is *stabilized in epoxy*
- The remaining Si/SiO₂ structure is suitable for back side SEE testing with heavy ions, protons, and pulsed laser light
- Can be adapted to flip-chip devices using standard mask procedures

Cut a hole in the packge with laser Mount device
directly
over holeStabilize device
by embedding it
in epoxyCompletely
remove
Silicon substrate
with XeF2 etchSilicon thickness = 700 Awith XeF2 etchSilicon Dioxide thickness = 1450 AOverlayers = 5 microns
SERESSA 2015 – Puebla, Mexico

Completely Mount package on remove test board Silicon substrate containing a hole with XeF_2 etch coincident with hole inpackage

Kanyagoro, IEEE TNS, 58, 3414 (2010).

Backside View

305 mils **153 mils** 158 mils 305 mils 158 mils 205 mils

SERESSA 2015 – Puebla, Mexico

Kanyagoro, IEEE TNS, 58, 3414 (2010).

Advantages:

- Potential for smaller spot size by using blue or UV light
- Accurate knowledge of deposited charge for SPA
- Calibration of Two-Photon Absorption by Single-Photon Absorption
- Reduction in LET uncertainties for back-side heavy-ion irradiation
- Reduction in LET uncertainties for *low-energy* proton measurements
- Permits heavy ion testing at *low-energy accelerators* since penetration depth is not an issue

Initial Concerns:

- Device functionality
- Heat dissipation
- SEU performance

Optical Excitation of Carriers

Optical Excitation of Carriers

$E_{dep} = 0.77 \, pJ \, (T \, x \, F_{overlap} \, x \, A_{0.07})$

SERESSA 2015 – Puebla, Mexico

Kanyagoro, IEEE TNS, 58, 3414 (2010).

Heavy-Ion SEU Response: Quantitative CRR Prediction of the SEU Threshold

SRAM Cell Design

2D Error Mapping of SOI SRAM

Sensitive transistors for all 1's highlighted in RED

SERESSA 2015 – Puebla, Mexico

2D Mapping with 293 nm Laser Pulse 25% above threshold

SERESSA 2015 – Puebla, Mexico

2D Mapping with 293 nm Laser Pulse 25% above threshold

SERESSA 2015 – Puebla, Mexico

2D Mapping with 293 nm Laser Pulse Near threshold

Laser pulse energy near threshold mostly single, and a few double-bit errors

KEY RESULT:

- Direct observation of *cell-to-cell variations in upset sensitivity*
- Consequence of process variations

Pulsed Laser Single-Event Effects

CASE STUDY 10

Two-Photon-Induced Single-Event Effects:

Basic Mechanisms in SiGe
Insert and Content and Service And Antices and Service Antices and Services and Service Antices and Servi

SERESSA 2015 – Puebla, Mexico

Pellish, et al., IEEE TNS, 55, 2936 (2008)

Basic Mechanisms: Single-Event-Induced ims **Charge Collection in SiGe HBTs**

Insemble 2 Basic Mechanisms: Single-Event-Induced **CR** Charge Collection in SiGe HBTs

Pellish, et al., IEEE TNS, 55, 2936 (2008)

Pulsed Laser Single-Event Effects

CASE STUDY 11

Laser-Induced Single-Event Effects:

Basic Mechanisms of SEE in GaN HEMTs

EXAMPLE : Basic Mechanisms: Single-Event-Induced **CR** Charge Collection in GaN HEMTs

Schottky barrier

EXAMPLE : Basic Mechanisms: Single-Event-Induced **CER** Charge Collection in GaN HEMTs

Investigation into the SET mechanisms of GaN HEMTs:

- The first demonstration of laser-induced SEEs in Al_{0.3}Ga_{0.7}N/GaN HEMTs
 - TPA using visible pulses
 - SPA using UV optical pulses
- We present *charge-collection transients* measured as a function of position, device bias conditions, and exposure to proton irradiation
- These results provide unique insights into *native* and *radiation-induced defects* in the material

Ims Basic Mechanisms: Single-Event-Induced **CR** Charge Collection in GaN HEMTs

- TPA-induced SETs on the drain and gate
- The device is biased "off"
- Significant Gate-Drain current flow!
- Fast and slow contributions evident
 SERESSA 2015 Puebla, Mexico

Roche, et al., IEEE TNS Dec. 2015, In press GaN UV SPA Transient Amplitude Maps (p+)

• *Vg* = 0 *V*; *biased* "on"

- The shapes of the transients provide insights into the nature and density of defects
- Analysis of the transients is consistent with traps with lifetimes ranging up to 30 ns
- Consistent with radiation-induced Nitrogen vacancies

Khatchartian, et al., IEEE TNS 2016, In press

Some mature applications of laser testing

SEU / MBU	 Compare thresholds of different devices from similar technologies Evaluate error multiplicity and EDAC options Descramble the logical address vs physical bit location
Digital SET	 Evaluate clock frequency effects and critical time window Analyze propagation / capture mechanisms
SEL	 Screen out sensitive devices, keep the hard ones for radiation testing Estimate cross section Localize sensitive areas for re-design
SEFI	 Enumerate / Classify failure modes of complex devices before radiation testing Localize / analyzes rare events for optimizing system hardening strategies Estimate relative thresholds and cross sections of different events
Analog SET	 Enumerate waveforms types and estimate respective probabilities Extract amplitude vs duration distribution plots Estimate relative thresholds and cross sections for different electrical setups
SEB	 Evaluate Safe Operating Area (SOA) Estimate sensitive depth

Conclusions

Questions

	Heavy ions	Laser	
What should I use for :		Single Photon	Two-photon
Screening devices with different designs in the same technology node for SEU-MBU	+	++	(+)
Accurate SEU cross section vs LET measurement for a memory device	++		
Testing fault-tolerant system level solutions	+	++	+
Analyzing deep charge collection mechanisms	+	+	(++)
Mapping SEL sensitive area of a flip-chip device		+	++
Validating an SEL-free design	+ +	+	
Studying rare SEFI events in a recent digital device		++	++
Defining design margins for analog SET in linear devices	+	++	+
Validating the radiation hardening efficiency of a design update	+	++	+
Obtain a 3D view of charge collection volumes			++