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Outline

 Basic Concepts

GOAL: to illustrate the basic characteristics of TPA and SPA SEE

 Case Studies 

 SEU Mapping

 Sensitive Node Identification/Mitigation

 Laser-Induced Latch-up Screening/Mitigation

 Hardened Circuit Verification

 Dynamic SEE Testing

 Two-Photon-Induced SEE

 Conclusions/Questions
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The Pulsed Laser is……..

A tool for injecting charge in a well-defined manner 
into semiconductor microelectronic and 
nanoelectronic structures

Has become: indispensable for Single-Event Effects 
characterization 
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Pulsed Laser SEE……..

• Above-band gap (conventional, single-photon) 
pulsed laser can inject:

• a well-characterized quantity of charge
• in a well-defined x-y location
• with a well-defined charge-deposition profile
• at a well-defined time

• Sub-bandgap (two-photon) pulsed laser can inject 
charge:

• in a well-defined x-y-z location
• at a well-defined time
• and can propagate through silicon wafers
• but is difficult to quantify
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• Neither is intended to replace heavy-ion irradiation

• TPA can not replace “conventional” (above band 
gap) SPA excitation

Two additional “Tools” in our “SEE Toolbox”

800 nm

Laser SEE Experiments

TPA and SPA: TWO  COMPLEMENTARY TECHNIQUES
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Pulsed Laser-Induced SEE Experiment

NRL Laser SEE Laboratory
PULSCAN equipment
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Pulsed Laser-Induced SEE Experiment
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SEE Evaluation of COTS Parts

• pulsed laser interrogation  
permits detailed spatial 
evaluation of SEE that is 
not possible with broad-
beam HI irradiation

200

Buchner, et al., TNS, 46, 1445 (1999). 

Short-pulse
SEU(0)

Short-pulse
SEU(1)

Long pulse
SEU (0)

SEL

SEL

If performed with broad-beam heavy ion 
irradiation you may or may not be able to 
separate out these different effects
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Laser-Induced SEE Experiment:
Optical Excitation of Carriers

Conventional:
λ < 1.1 m
Above band gap
Single-photon absorption

Two Photon:
λ > 1.1 m
Sub-bandgap
Two-photon or multiphoton
absorption

Optical Absorption Spectrum of Silicon

Band Edge (around 1.1 �m in Silicon)





SERESSA 2015 – Puebla, Mexico

590 nm
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Eg=1.1eV

+
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630 nm

• Two photons absorbed 

• By the material (silicon) 

• Simultaneously

• Creates a single e-h pair

Optical Excitation of Carriers in Silicon

• Single photon absorbed 

• By the material (silicon) 

• Creates a single e-h pair
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• NOTE: End result of excitation is identical

• The material does not know the difference

Optical Excitation of Carriers in Silicon
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Pulse Propagation Equation:

   ),(),(),( ),( 2
2  zrNIzrIzrI

dz
zrdI

ex

Linear Absorption
(Single-Photon, Beer’s Law)

Nonlinear Absorption
(Two-Photon)

Free-Carrier
Absorption

Optical Excitation of Carriers
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Carrier generation equation:

Linear Absorption
(Single-Photon, Beer’s Law)

Nonlinear Absorption
(Two-Photon)

Optical Excitation of Carriers
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• Single photon absorbed 

• Creates a single e-h pair

Linear (Single-Photon) Optical Absorption
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Carrier Density Distribution
Above-Band-Gap Single Photon Absorption
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Carrier Density Distribution
1/e Optical Penetration Depth

590 nm 800 nmWhat is meant by:
• “Penetration Depth”?
• “Skin Depth”?

I1/e = 0.368Io

 1/e depth

Depth at which the optical 
irradiance has fallen to 
36.8% of its initial value


63% of Charge
Deposited in 1/e
depth
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NRL Laser Single-Event Effects
13 Years of TPA SEE

3002 IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 49, NO. 6, DECEMBER 2002

Subbandgap Laser-Induced Single Event Effects:
Carrier Generation via Two-Photon Absorption

Dale McMorrow, William T. Lotshaw, Joseph S. Melinger, Stephen Buchner, Member, IEEE, and
Ronald L. Pease, Senior Member, IEEE

Abstract—Carrier generation based onsubbandgap two-photon
absorption is demonstrated and shown to be a viable alternative
to the conventional single-photon excitation approach in laser-in-
duced singleevent effects. Thetwo-photon approach exhibitschar-
acteristicsdistinct from thoseof single-photon excitation, and may
be advantageous for a range of single-event effect investigations.
Thechargetrack produced by two-photon absorption moreclosely
resemblesthat of heavy-ion irradiation and, becausethephoton en-
ergy issubbandgap, backsideinjection through bulk silicon wafers
isstraightforward and three-dimensional mapping ispossible.

Index Terms—Error injection, multi photon absorption, optical
propagation in absorbing media, silicon, single-event effects,
single-event transients, two-photon absorption.

I. INTRODUCTION

T HE PULSED picosecond laser has become an impor-
tant tool for the investigation and understanding of

single-event effects (SEEs) in microelectronic circuitry [1]–[7].
In its present implementation, the pulsed-laser technique
is based upon the excitation of carriers in a semiconductor
material using tightly focused, above-bandgap optical excita-
tion. Carrier generation is governed primarily by Beer’s law
b i h h h b b d h i l

Fig. 1. Room temperature absorption spectrum of silicon in the visible and
near-infrared region of the spectrum illustrating the common laser wavelengths
used for above-bandgap single-event effects measurements and also that for the
subbandgap experiment described here [8]–[11].
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Carrier generation equation:
0
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Nonlinear (Two-Photon) Optical Absorption
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• Carriers are generated by 
nonlinear absorption at high 
pulse irradiances by the 
simultaneous absorption of 
two photons
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Carrier generation equation:

Ec
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+

-

- --

• Two photons absorbed 

• By the material (silicon) 

• Simultaneously

• Create a single e-h pair

Nonlinear (Two-Photon) Optical Absorption
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• Carriers are highly concentrated in 
the high irradiance region near 
the focus of the beam

• Because of the lack of exponential 
attenuation, carriers can be 
injected at any depth in the 
semiconductor material

• This permits 3-D mapping and 
backside illumination
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“Zeroth” Order TPA Carrier Distribution

McMorrow, et al., TNS 2002

Two-Photon Absorption SEE Experiment
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Two-Photon Absorption:
• Efficient only in the high-

irradiance region near the 
focus of the beam
• Tight focus
• Short pulse (~120 fs)
• High pulse energy (~1 nJ)
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Two-Photon Absorption SEE Experiment

“Zeroth” Order TPA Carrier Distribution

McMorrow, et al., TNS 2002
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Pulsed Laser-Induced SEE Experiment
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Two-Photon Absorption

M. Goppert-Mayer, "Ueber Elementarakte mit
zweiQuantenspruengen", Ann. Phys., vol. 9, 
pp. 273-294, 1931.
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Other Applications of Two-Photon Absorption
Fluorescence Microscopy
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Other Applications of Two-Photon Absorption
Laser Manufacturing - MEMS
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Other Applications of Two-Photon Absorption
Two-photon microscopy of in vivo brain function

After Wikimedia commons
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Two-Photon Absorption SEE Experiment
What have we left out?

• Free Carrier Absorption
• Pump depletion
• Phase equation:

• β1 is proportional to the real part of the nonlinear 
susceptibility (χ(3))

• γ1 describes the refraction due to free carriers
• Nonlinear refractive index changes

• Net conclusion: results described here represent a convenient
0th order approximation and are valid only at low pulse 
irradiances. Recent work is addressing these higher-order 
effects….
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Surface elements opaque 
to optical excitation

Tightly focused 
two- photon 

excitation source

Substrate transparent 
to single photon 

sub-bandgap excitationCircuit Layer(s)

Region of 2 Photon
Carrier Generation

Recent Developments: 
Quantitative Characterization of TPA SEE

Pulse Delivered to the Chip:
TPA Dosimetry

Inside the Silicon:
Charge Deposition
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What Happens Inside the Silicon?

• Need exists for understanding 
quantitatively the carrier density 
distribution in TPA SEE experiments

• Complicated problem
• Community has been relying on a 
“Zeroth Order” representation

• Only considers carrier generation
• Neglects all all other effects

• NRL has been initiated a program to 
address this problem

• The current status of this effort is 
presented here
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McMorrow, et. al, TNS 49, 3002 (2002). 
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• Produce a software program that can accurately simulate the 
TPA-induced carrier deposition profile in silicon for any given 
set of experimental conditions

• Simulate/predict impact of various optical nonlinearities on the 
beam propagation through, and generation of free carriers in 
the medium

Goals:

• Numerical modeling using existing simulation software (NLO-
BPM) adapted for carrier generation and applied to silicon 

[Kovsh, et al., Applied Optics, 38, 1568 (1999)] 
• Confirm that capabilities can accommodate experimental 

conditions 
• Validate results through experimental measurement

Approach:

NRL TPA Modeling: Beyond Zeroth Order
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Lens
Sample

Nonlinear refraction (NLR), n2

Two-photon absorption (TPA), 

Nonlinear Beam Propagation in Si

ImNL}:

ReNL}:



1.6 nJ Gaussian Beam

1.6 nJ 

Charge Density

Hales, et al., IEEE TNS 
61, 3504 (2014) 
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1.6 nJ Gaussian Beam

What is the origin of this 
effect:

• Photon loss to TPA
• Photon loss to FCA
• FCR

FCA: Free-Carrier 
Absorption
FCR: Free-Carrier 
Refraction

Hales, et al., IEEE TNS 
61, 3504 (2014) 





1.6 nJ

5 nJ

16 nJ

1.6 nJ 

5 nJ 

16 nJ 

Hales, et al., IEEE TNS 
61, 3504 (2014) 
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Underfilled Objective: Gaussian Beam

Overfilled Objective: Non-Gaussian (Truncated) Beam

Controlling the Focused Laser Spot Size



1.6 nJ Truncated Beam

1.6 nJ Truncated 

Markedly non-
Gaussian
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TPA Dosimetry:
Quantitative Characterization in TPA SEE

Why do we care?
• The primary advantage of laser-based SEE approaches 
lies in their qualitative capabilities:

• sensitive node identification
• RHBD verification
• basic mechanisms/model validation/calibration
• part screening (ASET, SEL)
• fault injection

• However: 
• Set operating point prior to experiment
• Monitor operating point during experiment 
• Require correlation between subsequent experiments
• Next-level understanding of basic mechanisms
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V(t) PE

Calibrated InGaAs
Photodiode: 
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Observable: 

(PE)2 
r4 * 2 

Qdep  

Quantitative Characterization in TPA SEE

Why is it so difficult?
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TPA SEE Dosimetry

Definition for TPA Dosimetry: 
Measurement of the relevant characteristics of the optical 
pulse delivered to the surface of the DUT

Goals for TPA Dosimetry System: 
Convenient, reliable, reproducible measurement of the 
relevant characteristics of the optical pulse delivered to the 
surface of the DUT

• Development of online monitors
• Develop ability for control vs. monitoring
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Experimental Setup for TPA SEE Dosimetry

Khachatrian, et al., IEEE 
TNS 61, 3416 (2014) 
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VNL_OL = /SFWHM
4

SFWHM = 1/4/VNL_OL
1/4

Data exhibit the 
expected r4 dependence

TPA Dosimetry: Focused Laser Spot Size

Khachatrian, et al., IEEE 
TNS 61, 3416 (2014) 
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• Main constraint of the laser technique:
– Optical access to silicon is mandatory

• Packaging
– Ceramic or plastic opening
– Lead frame masking => repackaging
– Flip-chip

• Modern process technologies
– Many interconnections layers
– Metal lines totally absorb light
– Dummy cells: metal filling for process planarization

Laser SEE testing, technology and packaging

Solution:
backside testing 
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Front side or backside approach

2w0

Front side

Sensitive
volume

2w0

Backside

Sensitive
volume

Microscope
objective

Microscope
objective

nSi3.5substrate

Laser 
beam

Laser 
beam
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Relevant Experimental Parameters: Laser-
induced electron-hole generation rate
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Laser Parameter Summary

• Wavelength
– Determines absorption in silicon
– The longer the deeper (but lower resolution)

• Pulse duration
– The shorter the closer from particles

• Spot size
– Limited by diffraction
– Minimum value = maximum fidelity

• Energy
– Main experimental variable
– Difficult link with LET

Fixed by
laser source
technology & cost

Often fixed by 
optical setup, but 
can be adjusted



SERESSA 2015 – Puebla, Mexico

Laser SEE testing options 

• Several laser facilities around the 
world
– R&D facilities: flexibility, accuracy
– Industrial facilities: cost, speed, reliability

• Test services
– Beam time + support engineer

• Commercial systems now available

NRLJPL

Aerospace

IMS
MBDA

EADS

JAEACSSAR

SPELS/MEPHI
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 NIR-tunable picosecond laser 
source

 Amplified femtosecond 
parametric laser source

 Computer controlled tunability

: 400 - 2500 nm

 Energy : up to 1 mJ

 Picosecond synchronization of 
laser pulse with test vector

 5 laser-injected microscopes

 Backside testing

 Microprobing station with
backside laser scanning 
microscope

 New laser techniques for 
failure analysis

 Dedicated test chips

ATLAS Laser Facility at IMS
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Pulsed Laser Single-Event Effects

CASE STUDY 1

Single-Event Upset Mapping in  
an SRAM Cell
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WE RE

 0.8 µm AMS BiCMOS technology
 low density of metal tracks (SPA technique and frontside testing)

23µm

36µm

P1 P2

N1 N2
N1 N2

P1 P2WE RE

VDD

VSS

D D

VDD

D
D

N1-P1

N2-P2

WE RE

VSS

Test Vehicle : 6T SRAM cell
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Define Grid

Choose Laser Energy

Select Position

Laser Strike

Logic State control

SEU?

Reinitialization

No

Yes 1st level of Laser Energy
2nd level of Laser Energy
3rd level of Laser Energy

Scanning automation : basic principle
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20µm

0 0
1

N1 N2

P1 P2WE RE

VDD

VSS

D D

N1

0 1

P2

SEU Mapping : Sensitivity of the NMOS drain



SERESSA 2015 – Puebla, Mexico

10pJ

6T SRAM Test Vehicle

30pJ

49pJ

120pJ

177pJ

305pJ

588pJ

891pJ

1193pJ

SEU sensitivity map

SEU mechanisms
Design optimization

SEU mapping
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Pulsed Laser Single-Event Effects

CASE STUDY 2

Single-Event Upset Mapping in  
of a commercial SRAM
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Case study 1: HM6504 SRAM

• VDD=5V
• IDDmax=50mA

A0
…
A11
/ W
/ E
D
Q

VDD
VSS

Power supply

HM6504

Laser

Translation tables

• Wavelength : 800nm
• Pulse length : 1ps
• Spot 1/e  : 1.1µm

Test board

• Scanning step : 1µm
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SEU mapping of a single SRAM cell

• A single cell is visually selected in the middle of the 
array : the « target cell »

• Its logical address is read from the tester by 
inducing an SEU with the laser

• The adresses of the surrounding cells (the 
« neighbors ») are also noted

• During the scan, after each laser strike :
– only upsets in the target cell are used to build

the mapping
– neighbors state is monitored to ensure that the 

electrical environment of the target cell remains
the same

Target cell

Neighbors
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SEU mapping

All to 0 All to 1

20µm

4 pJ
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SEU mapping
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SEU mapping
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SEU mapping
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SEU Laser cross-section
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CASE STUDY 3

Dynamic Testing of ADCs
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Transient fault injection in an ADC

DUT
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Data

Trig

WR
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Laser

Conversion 
start

MSB 
latched

Data 
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MSB comparators
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Control
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Over
flowD7D6D5D4
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2.
87

 m
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Mixed signal ICs = complex errors
AD 7821, 8 bits, 100kS/s, 1/2 flash ADC
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Experimental results with ADC (2)
Dynamic sensitivity of comparators

2 MSB 
comparators
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Pulsed Laser Single-Event Effects

CASE STUDY 4

Analog Single-Event Transients 
in an Operational Amplifier
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Case study 4: LM124

• LM124 : quad operationnal amplifier 
• Analog SET observed during particle accelerator testing
• Transients duration in the µs domain
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ASET reproduction with laser

SPICE analysis

Electrical model
of the device
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ASET amplitude mapping

• Mappings of the amplitude of the transient measured
• Sensitive areas clearly identified
• Possibility of measuring the laser cross section from backside

LM124 Front side Backside
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Pulsed Laser Single-Event Effects

CASE STUDY 5a 

Laser-Induced Latchup Screening 
in CMOS Devices
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Laser-Induced Latchup Screening and 
Mitigation in CMOS Devices

• COTS Parts  

• Screening and Characterization 

• Space-Qualified Parts

• Identify SEL sensitive areas

• Redesign to eliminate problem



SERESSA 2015 – Puebla, Mexico

Why is Latchup an Issue?

• A single latchup event can compromise an entire 
mission
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Latch-Up in CMOS Devices

• Parasitic vertical (n-p-n) and lateral (p-n-p) bipolar transistors are a characteristic 
of CMOS technology

• If charge is injected into the base of one of the transistors, that transistor turns 
on; the increased current flow causes an injection of charge into the base of the 
other transistor, turning  it on as well 

• The result is that there is a feedback so that both transistors are turned on, 
leading to a low-resistance path between Vdd and Gnd, which is the origin of the 
latchup current.

• Current continues to flow until the voltage is dropped sufficiently so that the 
transistors turn off. 
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Latch-Up Screening of COTS Parts 
for Space Missions

• The pulsed laser permits the 
rapid and  accurate location of
SEU and SEL sensitive regions
of COTS parts with sub-micron 
precision

• This example: two Resolver-to-
Digital Converters were screened 
for latchup for a NASA space 
mission

DDC RDC19220
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590 nm
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Ev - --
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590 nm

• Single photon absorbed 

• Creates a single e-h pair
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Latch-Up Screening of COTS Parts 
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Latch-Up Screening of COTS Parts 
for Space Missions

DDC RDC19220
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• The latch-up sensitive areas for 
one of the parts is shown here 

• Based solely on these laser 
results, this part was eliminated 
from consideration for this and 
future NASA missions

SEL sensitive areas in COTS RDC

Latch-Up Screening of COTS Parts 
for Space Missions

Buchner, et al., TNS, 46, 1445 (1999). (DDC RDC19220)
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• The latch-up sensitive areas for 
one of the parts is here

• Based solely on these laser 
results, this part was eliminated 
from consideration for this and 
future NASA missions

• The other part, it turned out, was 
latch-up free and, eventually, 
was deemed acceptable for the 
mission in question

SEL sensitive areas in COTS RDC

Latch-Up Screening of COTS Parts 
for Space Missions

(DDC RDC19220) Buchner, et al., TNS, 46, 1445 (1999). 



SERESSA 2015 – Puebla, Mexico

Pulsed Laser Single-Event Effects

CASE STUDY 5b
Laser-Induced Latchup Screening and 

Mitigation in CMOS Devices
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National Semiconductor DS90C031 LVDS
Original Design

• LVDS Quad differential line driver designed into recent 
(2006) GPS upgrade program

• Unanticipated latchup sensitivity observed in HI testing 
(NASA)
• Unacceptable for mission requirements; threatened to delay 
launch date  (big $$$)
• Pulsed laser SEL evaluation  (NRL) revealed sensitivity 
localized to a small region  redesign possible
• Redesigned (Boeing)  refabricated (NS) retested (NASA)
• No Latchup observed in redesigned part
• Launch on schedule 

• We were HEROS!
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National Semiconductor DS90C031 LVDS
Original Design

Ground

Resistor

Drive Transistor

Latchup Location 
Identified by Laser

1

2

McMorrow, et al., IEEE TNS 
53, 1819 (2006). 
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National Semiconductor DS90C031 LVDS
Comparison of Two Designs

P+
N+

1

1

A

B

C

2

D

McMorrow, et al., IEEE TNS 53, 1819 (2006). 
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Pulsed Laser Single-Event Effects

CASE STUDY 6

SET Propagation in Logic Circuits
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SET Propagation in Logic Circuits

•As of 2006, previous work had shown:
– SET measurements on LARGE CHAIN STRUCTURES

under heavy ions can have WIDE DISTRIBUTIONS of 
pulse widths (> 1 ns), in bulk or SOI                                   
[Benedetto, Mavis, Eaton, Gadlage, Yanagawa].

Typically 200-800 Inverters
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Direct Measurement of SET Pulses
in Chains of Inverters  

“0”

“1”

Broad beam ions, 40MeVcm2/mg
or focused pulsed Laser

Buffer
High-Z
probe

Single-shot
oscilloscope

“0”

“1”

Broad beam ions, 40MeVcm2/mg
or focused pulsed Laser

Buffer
High-Z
probe

Single-shot
oscilloscope

130 nm partially depleted SOI chains, 800 inverters, four designs
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Ferlet-Cavrois, et al., IEEE TNS 
Dec. 2007; Dec 2008
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Focused Pulsed Laser Measurements:
Dependence on Strike Positioin

OUT

IN

4 rows of 200 inverters

Row1

Row2

Row3

Row4

Laser strike positions
1.2 µmFerlet-Cavrois, et al., IEEE TNS

Dec. 2007; Dec 2008



SET width is shorter 
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strikes close to the 
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SET width is shorter 
than 200 ps for laser 
strikes close to the 
chain output

Transient width gets 
very large close to the 
chain input (1.8 ns)
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Propagation in SOI Inverter Chain has a 
Progressive Broadening Effect

Propagation-Induced 
Pulse Broadening

Appx. 2 ps/inverter

These results:
• identified the 
ionization-induced 
propagation-induced  
pulse broadening 
phenomena
• helped explain and 
understand earlier 
measurements
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SET Propagation: Summary and Conclusions

• Implications:
• Test methodologies
• Interpretation and significance of existing data
• SET mitigation approaches

Ferlet-Cavrois, et al., IEEE TNS
Dec. 2007; Dec 2008
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Pulsed Laser Single-Event Effects

CASE STUDY 7
Two-Photon-Induced Single-Event Effects:

3-D Mapping of SET
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Three-Dimensional Mapping of SEE Sensitivity 
(LM124 Q20: General Characteristics)
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(Inverting Configuration; gain of 20)
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McMorrow, et al., IEEE TNS, 50, 2199 (2003). 
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Pulsed Laser Single-Event Effects

CASE STUDY 8

Backside, Through-Wafer, Two-Photon-Induced 
Single-Event Effects
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Tungston 
plugs

Cross Section of Modern Device

Circuit Layer

Metal



SERESSA 2015 – Puebla, Mexico

Backside “Through-Wafer” TPA Illumination

Surface elements opaque 
to optical excitation

Tightly focused two-
photon excitation 

source

Substrate transparent 
to single photon 

sub-bandgap excitationCircuit Layer(s)

Region of 2 Photon
Carrier Generation

McMorrow, et al., IEEE TNS 51 (2004) 
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Backside “Through-Wafer” TPA Illumination
BAE 4 Mb SRAM Flip Chip Test Structure

Package with lid-on

SRAM chip in test 
socket with lid removed 
and back-side of 4Mb 
SRAM milled

BAE SYSTEMS

McMorrow, et al., IEEE TNS 52, 2412 (2005) 
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Pulsed Laser-Induced SEE Experiment
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Backside “Through-Wafer” TPA Illumination
BAE 4 Mb SRAM Flip Chip Test Structure

BAE SRAM chip through-wafer image and SEU map

BAE SYSTEMS

McMorrow, et al., IEEE TNS 52, 2412 (2005) 
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• Daniel Loveless: Vanderbilt University
• Lloyd Massengill, Robert Reed, Bharat Bhuva, William 
Holman: Vanderbilt University

•Experimental study to compare SEE performance 
of conventional (current-based) charge pump with 
RHBD voltage-based charge pump   

Evaluation of RHBD Approaches
SEE Hardened Phase-Locked Loop
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Evaluation of RHBD Approaches
Phase-Locked Loop
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Loveless, et al., IEEE TNS 57, 2933 (2010)
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2 m

7.0 nJ

Loveless, et al., IEEE TNS
54, 2012 (2007).

Evaluation of RHBD Approaches
SEE Hardened Phase-Locked Loop

54, NO. 6, DECEMBER 2007
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Pulsed Laser Single-Event Effects

CASE STUDY 9

Single-Event Effects in Substrate-Etched SOI/CMOS 
Devices
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• Packaging
– Ceramic or plastic opening
– Lead frame masking => repackaging
– Flip-chip

• Modern process technologies
– Many interconnections layers
– Metal lines, tungsten plugs
– Dummy cells: metal filling for process planarization

• Effect heavy-ion and laser testing in different 
ways

Testing of Modern, Highly-Scaled Technology

New approaches 
are required
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New Approach:
• Complete removal of the Si substrate in an SOI 

Device

• Initial demonstration: application to a 90 nm 
Freescale SRAM

Single-Event Effects in Substrate-
Etched SOI Devices
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• NRL has adapted a standard XeF2 etching 
procedure involving chemical vapor etching of 
silicon

• The process involves no mechanical polishing
that can introduce stresses 

• The device is stabilized in epoxy
• The remaining Si/SiO2 structure is suitable for 

back side SEE testing with heavy ions, protons, 
and pulsed laser light

• Can be adapted to flip-chip devices using 
standard mask procedures

Single-Event Effects in Substrate-Etched 
SOI/CMOS Devices
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Silicon thickness = 700 A
Silicon Dioxide thickness = 1450 A
Overlayers = 5 microns

Cut a hole
in the packge
with laser

Mount device 
directly
over hole

Stabilize device 
by embedding it 
in epoxy

Completely 
remove 
Silicon substrate 
with XeF2 etch

Mount package on 
test board 
containing a hole 
coincident  with 
hole inpackage

Single-Event Effects in Substrate-Etched 
SOI/CMOS Devices

Kanyagoro, IEEE TNS, 
58, 3414 (2010).
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Backside View

Single-Event Effects in Substrate-Etched 
SOI/CMOS Devices

Kanyagoro, IEEE TNS, 
58, 3414 (2010).
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Advantages:
• Potential for smaller spot size by using blue or UV 

light
• Accurate knowledge of deposited charge for SPA
• Calibration of Two-Photon Absorption by Single-

Photon Absorption 
• Reduction in LET uncertainties for back-side 

heavy-ion irradiation
• Reduction in LET uncertainties for low-energy 

proton measurements
• Permits heavy ion testing at low-energy 

accelerators since penetration depth is not an issue

Single-Event Effects in Substrate-Etched 
SOI/CMOS Devices



SERESSA 2015 – Puebla, Mexico

Initial Concerns:
• Device functionality
• Heat dissipation 
• SEU performance

Single-Event Effects in Substrate-Etched 
SOI/CMOS Devices
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590 nm

Ec

Ev - --

1-Photon

Eg=1.1eV

+

-

630 nm

Optical Excitation of Carriers

• Single photon absorbed 

• By the material (silicon) 

• Creates a single e-h pair -4 -2 0 2 4
10

8

6

4

2

0

w(z)

1/e Contour

Position, m
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Optical Excitation of Carriers

90 nm SRAM

SEU Threshold

590 nm

SPAth = 0.77 pJ

Want to calculate the amount 
of charge deposited in the 
body for 0.77 pJ of incident 
laser pulse energy
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1.1 m

Carrier Excitation in Small Volume

Edep = 0.77 pJ (T x Foverlap x A0.07)

Silicon thickness = 700 A
Silicon Dioxide thickness = 1450 A

Kanyagoro, IEEE TNS, 
58, 3414 (2010).
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Heavy-Ion SEU Response: Quantitative 
Prediction of the SEU Threshold

0.07 fC

0.3 1fC

0.22 fC ==
0.32 MeV·
cm2/mg

0.31 fC ==
0.46 MeV·
cm2/mg

Freescale 90 nm SRAM

Kanyagoro, IEEE TNS, 
58, 3414 (2010); 
McMorrow, IEEE TNS, 
60, 4184 (2013).



SRAM Cell Design

M3 and 
M1

Latch (N-channel)

M4 and 
M2

Load (P-channel)

M6 and
M5

Access
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2D Error Mapping of SOI SRAM 

Sensitive 
transistors 
for all 1’s 

highlighted 
in RED

McMorrow, IEEE TNS, 
60, 4184 (2013).
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Multiple bit errors

Error Map for 
Bit #1

Error Map for 
Bits 1 and 2

Error Map for 
Bits 1, 2, and 

3

Error Map for 
Bits 1 thru 4

2D Mapping with 293 nm Laser Pulse
25% above threshold

McMorrow, IEEE TNS, 
60, 4184 (2013).
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2D Mapping with 293 nm Laser Pulse
25% above threshold

4-bit errors are common

McMorrow, IEEE TNS, 
60, 4184 (2013).



Maps for Individual Bit 
Errors near Threshold

Laser pulse energy 
near threshold—
mostly single, and a 
few double-bit errors

KEY RESULT:

• Direct observation of 
cell-to-cell variations 
in upset sensitivity

• Consequence of 
process variations

Bit 1Bit 2

Bit 3
Zero Upsets

for Bit 4

2D Mapping with 293 nm Laser Pulse
Near threshold

McMorrow, IEEE TNS, 
60, 4184 (2013).
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Ep/Eth= 1

2D Mapping with 293 nm Laser Pulse
Near threshold

Laser pulse energy 
near threshold—
mostly single, and a 
few double-bit errors

McMorrow, IEEE TNS, 
60, 4184 (2013).
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Pulsed Laser Single-Event Effects

CASE STUDY 10

Two-Photon-Induced Single-Event Effects:

Basic Mechanisms in SiGe
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Basic Mechanisms: Single-Event-Induced 
Charge Collection in SiGe HBTs

Pellish, et al., IEEE 
TNS, 55, 2936 (2008)
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Basic Mechanisms: Single-Event-Induced 
Charge Collection in SiGe HBTs

MODEL VALIDATION AND CALIBRATION
Pellish, et al., IEEE 

TNS, 55, 2936 (2008)
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Basic Mechanisms: Single-Event-Induced 
Charge Collection in SiGe HBTs

Pellish, et al., IEEE 
TNS, 55, 2936 (2008)
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Pulsed Laser Single-Event Effects

CASE STUDY 11
Laser-Induced Single-Event Effects:

Basic Mechanisms of SEE in GaN HEMTs
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Al0.3Ga0.7N

GaN

GS D

Si Substrate

Ec

EF

Ev

Eg = 3.4 eV
Eg = 4.2 eV

GaN
Al0.3Ga0.7N

Schottky barrier

gate

Basic Mechanisms: Single-Event-Induced 
Charge Collection in GaN HEMTs

2DEG
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Investigation into the SET mechanisms of GaN HEMTs:

• The first demonstration of laser-induced SEEs in 
Al0.3Ga0.7N/GaN HEMTs

• TPA using visible pulses 

• SPA using UV optical pulses

• We present charge-collection transients measured as a 
function of position, device bias conditions, and 
exposure to proton irradiation

• These results provide unique insights into native and 
radiation-induced defects in the material

Basic Mechanisms: Single-Event-Induced 
Charge Collection in GaN HEMTs
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• TPA-induced SETs on the drain and gate 
• The device is biased “off” 
• Significant Gate-Drain current flow!
• Fast and slow contributions evident

Al0.3Ga0.7N

GaN

GS D

0 V -4 V 20 V

Electric field in AlGaN depends 
on the Al composition and on 

Vgd

Basic Mechanisms: Single-Event-Induced 
Charge Collection in GaN HEMTs

Roche, et al., IEEE TNS 
Dec. 2015, In press

Al0.3Ga0.7N/GaN HEMT 

Vg = -4 V
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GaN UV SPA Transient Amplitude Maps (p+)

• The shapes of the transients provide insights 
into the nature and density of defects

• Analysis of the transients is consistent with 
traps with lifetimes ranging up to 30 ns

• Consistent with radiation-induced Nitrogen 
vacancies• Vg = 0 V; biased “on”

Khatchartian, et al., IEEE TNS 2016, In press
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Some mature applications of laser testing

SEU / 
MBU

- Compare thresholds of different devices from similar technologies
- Evaluate error multiplicity and EDAC options
- Descramble the logical address vs physical bit location

Digital 
SET

- Evaluate clock frequency effects and critical time window
- Analyze propagation / capture mechanisms

SEL
- Screen out sensitive devices, keep the hard ones for radiation testing
- Estimate cross section
- Localize sensitive areas for re-design

SEFI
- Enumerate / Classify failure modes of complex devices before radiation
testing
- Localize / analyzes rare events for optimizing system hardening strategies
- Estimate relative thresholds and cross sections of different events

Analog 
SET

- Enumerate waveforms types and estimate respective probabilities
- Extract amplitude vs duration distribution plots
- Estimate relative thresholds and cross sections for different electrical setups

SEB - Evaluate Safe Operating Area (SOA)
- Estimate sensitive depth
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Conclusions

Single-Event Effects testing

Particle accelerator Pulsed laser

Rate prediction Designs comparison

Parametric evaluation

Screening
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Complex case studies

Rare events analysis

Rad-hard design



What should I use for :
Heavy ions 

Laser
Single 
Photon Two-photon

Screening devices with different designs in the same 
technology node for SEU-MBU

Accurate SEU cross section vs LET measurement for a 
memory device

Testing fault-tolerant system level solutions

Analyzing deep charge collection mechanisms

Mapping SEL sensitive area of a flip-chip device

Validating an SEL-free design

Studying rare SEFI events in a recent digital device

Defining design margins for analog SET in linear devices

Validating the radiation hardening efficiency of a design 
update

Obtain a 3D view of charge collection volumes

Questions
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